Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 275: 116224, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38518610

ABSTRACT

Depletion of fossil fuel and pollution by heavy metals are two major global issues. The cell wall of algae consists of polymers of polysaccharides such as cellulose, hemicellulose, alginate, starch, and many others that are readily hydrolyzed to monosaccharides and hence are amenable to fermentation into bioethanol. Moreover, algae contain lipids that may undergo trans-esterification to biodiesel, and can be absorbed by heavy metals. In this study, extraction of lipids from Turbinaria turbinata (common brown alga) from the beach of Sharma, NEOM, Tabuk, Saudi Arabia by different solvents hexane, methanol, and hexane: methanol (1:1), and trans-esterification was performed to obtain biodiesel and investigated by GC.MS. The alga residue after fats extractions by different solvents was used in bioremediation synthetic wastewater containing 50 ppm of As-3, Co+2, Cu+2, Fe+2, Mn+2, and Zn+2. The residue of defatted alga was hydrolyzed by 2% H2SO4 and then fermented to obtain bioethanol. The combination of hexane: methanol (1:1) gave the greatest amount of petroleum hydrocarbons, which contain Tetradecane, 5-methyl, Octacosane, Pentatriacontane, and a small amount of Cyclotrisiloxane, Hexamethyl. The most effective removal % was obtained with alga residue defatted by hexane: methanol (1:1), and methanol, 100% removal of As-3, 83% Co+2, 95% Cu+2, 97.25% Fe+2, Mn+2 79.69%, Zn+2 90.15% with 2 g alga /L at 3 hours. The lowest value of sugar was obtained with hexane: methanol residue but gave the highest bioethanol efficiency. Thus, it is possible to use Turbinaria turbinata, or brown alga as a feedstock to produce bio-diesel, and bioethanol, and to remove heavy metals from wastewater, which may have a great economic and environmental significance.


Subject(s)
Metals, Heavy , Phaeophyta , Biofuels , Hexanes , Methanol , Wastewater , Metals, Heavy/analysis , Plants , Biodegradation, Environmental , Lipids , Solvents
2.
Article in English | MEDLINE | ID: mdl-37204206

ABSTRACT

Four extremely halophilic archaeal strains, LYG-108T, LYG-24, DT1T and YSSS71, were isolated from salted Laminaria produced in Lianyungang and saline soil from the coastal beach at Jiangsu, PR China. The four strains were found to be related to the current species of Halomicroarcula (showing 88.1-98.5% and 89.3-93.6% similarities, respectively) as revealed by phylogenetic analysis based on 16S rRNA and rpoB' genes. These phylogenies were fully supported by the phylogenomic analysis, and the overall genome-related indexes (average nucleotide identity, DNA-DNA hybridization and average amino acid identity) among these four strains and the Halomicroarcula species were 77-84 %, 23-30 % and 71-83 %, respectively, clearly below the threshold values for species demarcation. Additionally, the phylogenomic and comparative genomic analyses revealed that Halomicroarcula salina YGH18T is related to the current species of Haloarcula rather than those of Halomicroarcula, Haloarcula salaria Namwong et al. 2011 is a later heterotypic synonym of Haloarcula argentinensis Ihara et al. 1997, and Haloarcula quadrata Oren et al. 1999 is a later heterotypic synonym of Haloarcula marismortui Oren et al. 1990. The major polar lipids of strains LYG-108T, LYG-24, DT1T and YSSS71 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate, sulphated mannosyl glucosyl diether and additional glycosyl-cardiolipins. All these results showed that strains LYG-108T (=CGMCC 1.13607T=JCM 32950T) and LYG-24 (=CGMCC 1.13605=JCM 32949) represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula laminariae sp. nov. is proposed; strains DT1T (=CGMCC 1.18928T=JCM 35414T) and YSSS71 (=CGMCC 1.18783=JCM 34915) also represent a new species of the genus Halomicroarcula, for which the name Halomicroarcula marina sp. nov. is proposed.


Subject(s)
Haloarcula , Halobacteriaceae , Halobacteriales , Laminaria , Phylogeny , RNA, Ribosomal, 16S/genetics , Glycolipids/chemistry , Fatty Acids/chemistry , Base Composition , Sequence Analysis, DNA , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sodium Chloride , Comparative Genomic Hybridization , China , DNA, Archaeal/genetics
3.
J Nat Med ; 77(3): 508-515, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933089

ABSTRACT

Amyloid ß (Aß) is thought to be involved in the pathogenesis of Alzheimer's disease (AD). Aß aggregation in the brain is considered the cause of AD. Therefore, inhibiting Aß aggregation and degrading existing Aß aggregates is a promising approach for the treatment and prevention of the disease. In searching for inhibitors of Aß42 aggregation, we found that meroterpenoids isolated from Sargassum macrocarpum possess potent inhibitory activities. Therefore, we searched for active compounds from this brown alga and isolated 16 meroterpenoids, which contain three new compounds. The structures of these new compounds were elucidated using two-dimensional nuclear magnetic resonance techniques. Thioflavin-T assay and transmission electron microscopy were used to reveal the inhibitory activity of these compounds against Aß42 aggregation. All the isolated meroterpenoids were found to be active, and compounds with a hydroquinone structure tended to have stronger activity than those with a quinone structure.


Subject(s)
Alzheimer Disease , Sargassum , Terpenes , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Sargassum/chemistry , Terpenes/chemistry , Terpenes/pharmacology
4.
Biomolecules ; 13(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36979354

ABSTRACT

Cancer is one of the main causes of human mortality worldwide. Despite the advances in the diagnostics, surgery, radiotherapy, and chemotherapy, the search for more effective treatment regimens and drug combinations are relevant. This work aimed to assess the radiomodifying effect and molecular mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and product of its autohydrolysis (ScF_AH) in combination with pacificusoside D from the starfish Solaster pacificus (SpD) on the model of viability and invasion of three-dimension (3D) human melanoma cells SK-MEL-2. The cytotoxicity of ScF (IC50 JB6 Cl41 > 800 µg/mL; IC50 SK-MEL-2 = 685.7 µg/mL), ScF_AH (IC50 JB6 Cl41/SK-MEL-2 > 800 µg/mL), SpD (IC50 JB6 Cl41 = 22 µM; IC50 SK-MEL-2 = 5.5 µM), and X-ray (ID50 JB6 Cl41 = 11.7 Gy; ID50 SK-MEL-2 = 6.7 Gy) was determined using MTS assay. The efficiency of two-component treatment of 3D SK-MEL-2 cells was revealed for ScF in combination with SpD or X-ray but not for the combination of fucoidan derivative ScF_AH with SpD or X-ray. The pre-treatment of spheroids with ScF, followed by cell irradiation with X-ray and treatment with SpD (three-component treatment) at low non-toxic concentrations, led to significant inhibition of the spheroids' viability and invasion and appeared to be the most effective therapeutic scheme for SK-MEL-2 cells. The molecular mechanism of radiomodifying effect of ScF with SpD was associated with the activation of the initiator and effector caspases, which in turn caused the DNA degradation in SK-MEL-2 cells as determined by the Western blotting and DNA comet assays. Thus, the combination of fucoidan from brown algae and triterpene glycoside from starfish with radiotherapy might contribute to the development of highly effective method for melanoma therapy.


Subject(s)
Laminaria , Melanoma , Animals , Humans , Apoptosis , Cell Line, Tumor , Starfish , Melanoma/metabolism , DNA/therapeutic use
5.
J Phycol ; 59(1): 193-203, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36330991

ABSTRACT

Different from the traditional knowledge about kelp, three sexual phenotypes (female, male, and monoecious) exist in the haploid gametophytes of Undaria pinnatifida. However, the sex-determining mechanisms remain unknown. Genetic linkage mapping is an efficient tool to identify sex-linked regions. In the present study, we resequenced a segregating gametophyte family based on the male genome of U. pinnatifida. A high-density genetic linkage map was constructed using 9887 SNPs, with an average distance of 0.41 cM between adjacent SNPs. On the basis of this genetic map and using the composite interval mapping method, we identified 62 SNPs significantly linked with the sexual phenotype. They were located at a position of 67.67 cM on the linkage group 23, corresponding to a physical range of 14.67 Mbp on the HiC_Scaffold_23 of the genome. Reanalysis of the previous specific length amplified fragment sequencing data according to the reference genome led to the identification of a sex-linked genomic region that encompassed the above-mentioned 14.67 Mbp region. Hence, this overlapped genomic range was likely the sex-determining region. Within this region, 129 genes were retrieved and 39 of them were annotated with explicit function, including the potential male sex-determining gene-encoding high mobility group (HMG) domain protein. Relative expression analysis of the HMG gene showed that its expression was higher in male gametophytes during the vegetative phase and monoecious gametophytes during both the vegetative and gametogenesis phases, but significantly lower in male gametophytes during the gametogenesis phase. These results provide a foundation for deciphering the sex-determining mechanism of U. pinnatifida.


Subject(s)
Undaria , Undaria/genetics , Germ Cells, Plant , Genetic Linkage , Genomics
6.
Int J Biol Macromol ; 225: 648-657, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36395953

ABSTRACT

Six fucoidan fractions were isolated from the brown alga Alaria angusta. Structures of enzymatic hydrolysis products of the fraction 1AaF2 (Fuc:Gal ~ 1:1; 33 % of sulfates) by fucanase from Wenyingzhuangia fucanilytica were studied by chemical and instrumental (NMR spectroscopy and mass-spectrometry) methods. It was shown that 1AaF2 consisted of two structurally different fucoidans: a sulfated 1,3;1,4-α-L-fucan and an enzyme-resistant sulfated and acetylated complex fucogalactan (Fuc:Gal ~ 1:2; 19 % of sulfates) 1AaF2_HMP containing extended 1,3-linked fucose and 1,3/1,4-linked galactose fragments (up to 5 residues). The fractions 1AaF2 and 1AaF2_HMP were a non-cytotoxic, possessed dose-dependent chemopreventive effect on EGF-induced neoplastic cell transformation of mouse normal epidermal JB6 Cl41 cells and inhibited the colony formation of human melanoma SK-MEL-28 cells.


Subject(s)
Antineoplastic Agents , Melanoma , Animals , Mice , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Sulfates/chemistry
7.
Braz. j. biol ; 83: 1-10, 2023. map, ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468982

ABSTRACT

Seaweeds are a major marine resource that can be explored to develop novel pharmaceutical molecules. The present study showed the presence of unique bioactive components in the petroleum ether extract (PEE) and methanolic extract (ME) of Sargassum tenerrimum. The gas chromatography-mass spectrometry analysis suggested that the PEE of S. tenerrimum contained antibacterial biomolecules: hexadecanoic acid, methyl ester, 17-pentatriacontene, dasycarpidan-1-methanol, and acetate (ester). However, the ME of S. tenerrimum exhibited better antibacterial effect than the PEE due to the presence of the bioactive compounds 1,2-benzenedicarboxylic acid, diisooctyl ester, tetratetracontane, 1-docosene, 1,2-benzenediol, and benzoic acid. Thus, promising antibacterial molecules can be isolated from S. tenerrimum for better therapeutic use.


As algas marinhas são um importante recurso marinho que pode ser explorado para desenvolver novas moléculas farmacêuticas. O presente estudo mostrou a presença de componentes bioativos únicos no extrato etéreo de petróleo (PEE) e no extrato metanólico (ME) de Sargassum tenerrimum. A análise por cromatografia gasosa espectrometria de massa sugeriu que o PEE de S. tenerrimum continha biomoléculas antibacterianas: ácido hexadecanoico, éster metílico, 17-pentatriaconteno, dasycarpidan-1-metanol e acetato (éster). Entretanto, o ME de S. tenerrimum exibiu melhor efeito antibacteriano do que o PEE devido à presença dos compostos bioativos ácido 1,2-benzenodicarboxílico, éster diisooctil, tetratetracontano, 1-docosene, 1,2-benzoenodiol e ácido benzoico. Assim, moléculas antibacterianas promissoras podem ser isoladas de S. tenerrimum para melhor uso terapêutico.


Subject(s)
Anti-Bacterial Agents/analysis , Gas Chromatography-Mass Spectrometry , Phaeophyta/chemistry , Sargassum/chemistry
8.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469198

ABSTRACT

Abstract Seaweeds are a major marine resource that can be explored to develop novel pharmaceutical molecules. The present study showed the presence of unique bioactive components in the petroleum ether extract (PEE) and methanolic extract (ME) of Sargassum tenerrimum. The gas chromatography-mass spectrometry analysis suggested that the PEE of S. tenerrimum contained antibacterial biomolecules: hexadecanoic acid, methyl ester, 17-pentatriacontene, dasycarpidan-1-methanol, and acetate (ester). However, the ME of S. tenerrimum exhibited better antibacterial effect than the PEE due to the presence of the bioactive compounds 1,2-benzenedicarboxylic acid, diisooctyl ester, tetratetracontane, 1-docosene, 1,2-benzenediol, and benzoic acid. Thus, promising antibacterial molecules can be isolated from S. tenerrimum for better therapeutic use.


Resumo As algas marinhas são um importante recurso marinho que pode ser explorado para desenvolver novas moléculas farmacêuticas. O presente estudo mostrou a presença de componentes bioativos únicos no extrato etéreo de petróleo (PEE) e no extrato metanólico (ME) de Sargassum tenerrimum. A análise por cromatografia gasosa-espectrometria de massa sugeriu que o PEE de S. tenerrimum continha biomoléculas antibacterianas: ácido hexadecanoico, éster metílico, 17-pentatriaconteno, dasycarpidan-1-metanol e acetato (éster). Entretanto, o ME de S. tenerrimum exibiu melhor efeito antibacteriano do que o PEE devido à presença dos compostos bioativos ácido 1,2-benzenodicarboxílico, éster diisooctil, tetratetracontano, 1-docosene, 1,2-benzoenodiol e ácido benzoico. Assim, moléculas antibacterianas promissoras podem ser isoladas de S. tenerrimum para melhor uso terapêutico.

9.
Braz. j. biol ; 83: e249536, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1345531

ABSTRACT

Abstract Seaweeds are a major marine resource that can be explored to develop novel pharmaceutical molecules. The present study showed the presence of unique bioactive components in the petroleum ether extract (PEE) and methanolic extract (ME) of Sargassum tenerrimum. The gas chromatography-mass spectrometry analysis suggested that the PEE of S. tenerrimum contained antibacterial biomolecules: hexadecanoic acid, methyl ester, 17-pentatriacontene, dasycarpidan-1-methanol, and acetate (ester). However, the ME of S. tenerrimum exhibited better antibacterial effect than the PEE due to the presence of the bioactive compounds 1,2-benzenedicarboxylic acid, diisooctyl ester, tetratetracontane, 1-docosene, 1,2-benzenediol, and benzoic acid. Thus, promising antibacterial molecules can be isolated from S. tenerrimum for better therapeutic use.


Resumo As algas marinhas são um importante recurso marinho que pode ser explorado para desenvolver novas moléculas farmacêuticas. O presente estudo mostrou a presença de componentes bioativos únicos no extrato etéreo de petróleo (PEE) e no extrato metanólico (ME) de Sargassum tenerrimum. A análise por cromatografia gasosa-espectrometria de massa sugeriu que o PEE de S. tenerrimum continha biomoléculas antibacterianas: ácido hexadecanoico, éster metílico, 17-pentatriaconteno, dasycarpidan-1-metanol e acetato (éster). Entretanto, o ME de S. tenerrimum exibiu melhor efeito antibacteriano do que o PEE devido à presença dos compostos bioativos ácido 1,2-benzenodicarboxílico, éster diisooctil, tetratetracontano, 1-docosene, 1,2-benzoenodiol e ácido benzoico. Assim, moléculas antibacterianas promissoras podem ser isoladas de S. tenerrimum para melhor uso terapêutico.


Subject(s)
Sargassum , Saudi Arabia , Plant Extracts , Indian Ocean , Anti-Bacterial Agents/pharmacology
10.
Bioengineering (Basel) ; 9(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421119

ABSTRACT

The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen's health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device's operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen's cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.

11.
Plants (Basel) ; 11(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432908

ABSTRACT

Currently, the use of biostimulants in agriculture is a tool for mitigating certain environmental stresses. Brown algae extracts have become one of the most important categories of biostimulants in agriculture, and are derived from the different uses and positive results obtained under optimal and stressful conditions. This study aimed to examine the efficacy of a foliar application of a hydroalcoholic extract of Sargassum spp. and two controls (a commercial product based on Ascophyllum nodosum and distilled water) with regard to growth, the antioxidant system, and the expression of defense genes in tomato seedlings grown in nonsaline (0 mM NaCl) and saline (100 mM NaCl) conditions. In general, the results show that the Sargassum extract increased the growth of the seedlings at the end of the experiment (7.80%) compared to the control; however, under saline conditions, it did not modify the growth. The Sargassum extract increased the diameter of the stem at the end of the experiment in unstressed conditions by 14.85% compared to its control and in stressful conditions by 16.04% compared to its control. Regarding the accumulation of total fresh biomass under unstressed conditions, the Sargassum extract increased it by 19.25% compared to its control, and the accumulation of total dry biomass increased it by 18.11% compared to its control. Under saline conditions, the total of fresh and dry biomass did not change. Enzymatic and nonenzymatic antioxidants increased with NaCl stress and the application of algal products (Sargassum and A. nodosum), which was positively related to the expression of the defense genes evaluated. Our results indicate that the use of the hydroalcoholic extract of Sargassum spp. modulated different physiological, metabolic, and molecular processes in tomato seedlings, with possible synergistic effects that increased tolerance to salinity.

12.
Article in English | MEDLINE | ID: mdl-35389335

ABSTRACT

Four halophilic archaeal strains, designated HD8-83T, LYG-36T, DLLS-82 and RC-68T, were isolated from the salted brown alga Laminaria of three different origins (Dalian, Lianyungang, Dalian and Rongcheng) in PR China. All strains had pleomorphic rod cells that were motile, lysed in distilled water, stained Gram-negative, and formed red-pigmented colonies on agar plate (except for DLLS-82, which formed white colonies). Based on phylogenetic analyses of the 16S rRNA genes, strain HD8-83T was closely related to Halorussus litoreus HD8-51T (97.9 % similarity), strain LYG-36T and DLLS-82 to Halorussus rarus TBN4T (94.4 % and 94.7 % similarities, respectively), and strain RC-68T to Halorussus salinus YJ-37-HT (96.9 % similarity). Results of phylogenetic analyses based on rpoB' genes and 728 concatenated single-copy orthologous clusters also showed that these strains formed three different branches and clustered tightly with the Halorussus members. The average nucleotide identity, average amino acid identity and in silico DNA-DNA hybridization values between strains LYG-36T and DLLS-82 were 98.9, 98 and 92.4%, showing that they were different strains of the same species. While those values between the isolates and other Halorussus members were below 84.7, 82.9 and 28.9 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strains HD8-83T, LYG-36T, DLLS-82 and RC-68T represent three novel species of the genus Halorussus for which the names Halorussus halobius sp. nov. (type strain: HD8-83T=CGMCC 1.15334T=JCM 31110T), Halorussus marinus sp. nov. (type strain: LYG-36T=CGMCC 1.13606T=JCM 32952T; reference strain: DLLS-82=CGMCC 1.13604=JCM 32951) and Halorussus pelagicus sp. nov. (type strain: RC-68T=CGMCC 1.13609T=JCM 32953T) are proposed.


Subject(s)
Halobacteriaceae , Laminaria , Bacterial Typing Techniques , Base Composition , China , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/analysis
13.
Data Brief ; 42: 108068, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35356318

ABSTRACT

Kelps or brown algae are a wide group of marine macroalgae that play an important role in aquatic ecosystems and generally have high commercial value. To facilitate brown algal studies, we report the complete genome sequence of the largest kelp Macrocystis pyrifera. The whole genome is ∼428 Mb in size, comprises 44,307 scaffolds with an average GC content of 47%, and is predicted to contain a total of 24,778 genes. 18S sequence-based phylogenetic analysis revealed that littoral brown seaweed Scytosiphon lomentaria is the closest species of M. pyrifera. Numerous genes identified in this dataset are involved in genetic information processing, signaling, and cellular processes, carbohydrate metabolism, and terpenoids biosynthesis.

14.
Int J Biol Macromol ; 206: 614-620, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35219778

ABSTRACT

The fucoidan SdeF was isolated from brown alga Saccharina dentigera. The structure of the obtained polysaccharide was studied by chemical methods, NMR spectroscopy of the fully and partially desulfated derivatives, and mass spectrometry of the fucoidan fragments, labeled with 18O. The SdeF was shown to be sulfated (40%) 1,3-linked α-L-fucan, with branches at C2. The sulfate groups were found at positions C2 and C4. Derivatives SdeFDS and SdeFPL were obtained by solvolytic desulfation and autohydrolysis of SdeF, respectively. According to 13C NMR data, SdeFDS is 1,3-linked α-L-fucan, while SdeFPL is 4-sulfated 1,3-linked α-L-fucan. Native fucoidan SdeF was shown to be a non-toxic anticancer substance in the model of human malignant melanoma RPMI-7951, colorectal adenocarcinoma HCT-116, and small intestine adenocarcinoma HuTu 80 cells. The partial desulfation of SdeF at C2 and/or the reduction of its Mw, from 229 to 28 kDa, decreased the anticancer activity; complete removal of the sulfated groups and/or Mw reduction to 4.7 kDa further reduced the effect of this polysaccharide.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology , Sulfates
15.
Antioxidants (Basel) ; 11(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35204193

ABSTRACT

Obesity is becoming a global epidemic as a result of high-calorie food intake and unhealthy lifestyles. Different marine plants, especially brown algae (Ecklonia cava), are traditionally used to treat different health-related issues. The study was carried out to investigate the anti-obesity properties of E. cava 70% ethanol extract. To evaluate the anti-obesity effect of E. cava, both in vitro and in vivo tests were performed. E. cava suppresses pre-adipocyte 3T3-L1 differentiation in a dose-dependent manner. In HFD-induced obese rats' models, administration of E. cava 125, 250, and 500 mg/kg significantly decreases total body weight and organs, especially liver weight, in all treatment groups. Adipose tissue weight, including subcutaneous, epididymal, peritoneal, and mesenteric adipose tissue, was markedly reduced in E. cava-treated HFD rats in dose-dependent manners. In addition, liver-related biomarkers AST, ALP, ALT, and GGT were evaluated; the lower level of liver-related biomarkers indicates no liver injury or fatty liver issue in E. cava HFD treatment groups. In addition, E. cava treatment has significant effects on the expression of adipogenic and lipogenic (PPAR-γ, FAS, LPL, and SREBP-1c) genes. Altogether, these results show the anti-obesity effect of E. cava. We concluded that E. cava could be a potential candidate for the prevention of obesity-induced by a high-fat diet.

16.
Front Genet ; 12: 801937, 2021.
Article in English | MEDLINE | ID: mdl-34925470

ABSTRACT

Undaria pinnatifida is the commercially second most important brown alga in the world. Its global annual yield has been more than two million tonnes since 2012. It is extensively cultivated in East Asia, mainly consumed as food but also used as feed for aquacultural animals and raw materials for extraction of chemicals applicable in pharmaceutics and cosmetics. Cultivar breeding, which is conducted on the basis of characteristics of the life history, plays a pivotal role in seaweed farming industry. The common basic life history shared by kelps determines that their cultivar breeding strategies are similar. Cultivar breeding and cultivation methods of U. pinnatifida have usually been learned or directly transferred from those of Saccharina japonica. However, recent studies have revealed certain peculiarity in the life history of U. pinnatifida. In this article, we review the studies relevant to cultivar breeding in this alga, including the peculiar component of the life history, and the genetics, transcriptomics and genomics tools available, as well as the main cultivar breeding methods. Then we discuss the prospects of cultivar breeding based on our understanding of this kelp and what we can learn from the model brown alga and land crops.

17.
J Agric Food Chem ; 69(48): 14643-14649, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34812623

ABSTRACT

A type III polyketide synthase (SfuPKS1) from the edible seaweed Sargassum fusiforme was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity. Furthermore, the catalytic efficiency (kcat/KM) for acetyl-CoA was 11.8-fold higher than that for 4-coumaroyl-CoA. A pathway for the synthesis of naringenin involving SfuPKS1 was also constructed in Escherichia coli by recombinant means, resulting in 4.9 mg of naringenin per liter.


Subject(s)
Sargassum , Seaweed , Acyltransferases , Catalysis , Kinetics , Substrate Specificity
18.
Mar Drugs ; 19(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34564158

ABSTRACT

Reconstructing the typical analogue of extracellular matrix (ECM) in engineered biomaterials is essential for promoting tissue repair. Here, we report an ECM-mimetic scaffold that successfully accelerated wound healing through enhancing vascularization and regulating inflammation. We prepared an electrospun fiber comprising a brown alga-derived polysaccharide (BAP) and polyvinyl alcohol (PVA). The two polymers in concert exerted the function upon the application of PVA/BAP2 fiber in vivo; it started to reduce the inflammation and promote angiogenesis at the wound site. Our serial in vitro and in vivo tests validated the efficacy of PVA/BAP2 fiber. Particularly, PVA/BAP2 fiber accelerated the repair of a full-thickness skin wound in diabetic mice and induced optimal neo-tissue formation. Generally, our results suggest that, by mimicking the function of ECM, this fiber as an engineered biomaterial can effectively promote the healing efficiency of diabetic wounds. Our investigation may inspire the development of new, effective, and safer marine-derived scaffold for tissue regeneration.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biocompatible Materials/pharmacology , Diabetes Mellitus, Experimental , Skin Ulcer/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Aquatic Organisms , Biocompatible Materials/administration & dosage , Biocompatible Materials/therapeutic use , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Polymers , Polysaccharides/chemistry , Polyvinyl Alcohol/chemistry , Skin/drug effects , Tissue Scaffolds/chemistry , Wound Healing/drug effects
19.
New Phytol ; 231(5): 2077-2091, 2021 09.
Article in English | MEDLINE | ID: mdl-34076889

ABSTRACT

Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.


Subject(s)
CRISPR-Cas Systems , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Eukaryota , Gene Knockout Techniques , /genetics
20.
Mar Genomics ; 60: 100878, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34006489

ABSTRACT

Monaibacterium sp. ALG8 (=MCCC 1 K04733) was isolated from seawater around brown algae. The genome of Monaibacterium sp. ALG8 was sequenced, one circular 3,036,380 bp chromosome and six circular plasmids ranging from 12,229 to 151,263 bp were found after assembly. The results of genomic annotation showed that Monaibacterium sp. ALG8 lacks the ability to degrade alginate, indicating its ecological role may not be directly related to the degradation of brown algae. The comparison of genomic features in the plasmids showed that almost all of these plasmids, except pALG4, were horizontally recruited from donors, not ancestors. Based on predicted functions, the existence of plasmids may provide strain ALG8 with advantages including nitrate reduction, tolerance of osmotic stress via glycine betaine, resistance to heavy metal stress such as mercury and cobalt, degradation of benzoate metabolites such as p-cumate, transformation of the swim-or-stick lifestyle and improvement of the immune system with two CRISPR-Cas systems. This study provides evidence for the carbon metabolic patterns of Monaibacterium sp. ALG8 and predicts the functions and donors of six plasmids in this strain, broadening our understanding of the ecological roles of bacteria in the environment around brown algae and the functions and evolutionary patterns of plasmids in marine Roseobacter lineage members.


Subject(s)
Rhodobacteraceae , Roseobacter , Plasmids/genetics , Rhodobacteraceae/genetics , Roseobacter/genetics , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...